Graph Queries from Natural Language using
Constrained Language Models and Visual Editing

Benedikt Kantz
Institute of Visual Computing
Graz University of Technology

Graz, Austria
benedikt.kantz@tugraz.at

Stefan Lengauer
Institute of Visual Computing
Graz University of Technology

Graz, Austria
s.lengauer @tugraz.at

Abstract—Querying knowledge bases using ontologies is usu-
ally performed using dedicated query languages, question-
answering systems, or visual query editors for Knowledge Graphs
(KGs). We propose a novel approach that enables users to
query the knowledge graph by specifying prototype graphs
using Natural Language (NL) and visually editing them. This
approach enables non-experts to formulate queries without prior
knowledge of the ontology and specific query languages. Our
approach converts NL queries to these prototype graphs by
utilizing a two-step constrained Language Model (LM) generation
based on semantically similar features within an ontology. The
resulting prototype graph serves as the building block for further
user refinements within a dedicated visual query builder. Our
approach consistently generates a valid SPARQL query within
the constraints imposed by the ontology, without requiring any
additional corrections to the syntax or classes and links used.
Unlike related LM approaches, which often require multiple iter-
ations to fix invalid syntax, non-existent classes, and non-existent
links, our approach achieves this consistently. We evaluate the
performance of our system using graph retrieval on synthetic
queries, comparing multiple metrics, models, and ontologies. We
further validate our system through a preliminary user study.
By utilizing our constrained pipeline, we show that the system
can perform efficient and accurate retrieval using more efficient
models compared to other approaches.

Index Terms—Ontologies, graph retrieval, natural language
queries, visual query interfaces

I. INTRODUCTION

Ontologies are a foundational approach to represent the
graph schema for KGs and enable knowledge transfers, ex-
ploration, and representation for further processing [1]. These
ontologies and belonging KGs can achieve significant sizes
and are, therefore, challenging for users unfamiliar with the
knowledge domain to explore and search. One example of

This work is partially supported by the HEREDITARY Project, as part of
the European Union’s Horizon Europe research and innovation programme
under grant agreement No GA 101137074, the Austrian Science Fund (FWF)
10.55776/COE12, Cluster of Excellence Bilateral Artificial Intelligence and
the FFG HybridAir project #F0999902654.

Kevin Innerebner
Institute of Human-Centred Computing
Graz University of Technology
Graz, Austria
innerebner @tugraz.at

Elisabeth Lex
Institute of Human-Centred Computing
Graz University of Technology
Graz, Austria
elisabeth.lex @tugraz.at

Peter Waldert
Institute of Visual Computing
Graz University of Technology

Graz, Austria

peter.waldert@tugraz.at

Tobias Schreck
Institute of Visual Computing
Graz University of Technology

Graz, Austria
tobias.schreck @tugraz.at

such an extensive collection of knowledge is DBpedia [2],
which compiles linked articles into hundreds of classes and
connects them through their various properties within the class
hierarchy. Such a rich ontology can pose challenges for users
building queries.

The ontologies are usually queried using specialized query
languages, such as SPARQL [3], which can pose an addi-
tional barrier of entry for users seeking to retrieve structured
knowledge from such systems. This paper, therefore, proposes
a novel querying strategy, which maps relational queries in NL
to prototype graph representations, which can then be further
adjusted by the user to desired retrieval criteria. The system is
tuned for NL queries formulated as relations, differing from
traditional opaque question-answering approaches, which typi-
cally do not visualize the generated queries or their processing,
nor allow edits to the query.

Our system extracts the prototype graph structure from the
query using the capabilities of LMs to extract information from
NL input — even in cases where there is no exact match for
the required information within the ontology. We achieve a
valid prototype graph by constraining the LM output using
a dynamically created grammar to adhere to the classes and
links present within the ontology. This novel addition of the
grammar to the query generation by the LM enables our
system, in turn, to always return prototype graphs that are
valid within the context of the used ontology. Our system,
furthermore, allows the user to refine and adjust the prototype
graph in a visual editor, enabling the correction of mistakes
the LM might make. Within this editor, users can refine their
queries or extend them to more complex queries, allowing
them to edit their queries without modifying the SPARQL
query directly or any other intermediate representation in code.

We evaluate the prototype graph extraction performance
of our approach using a synthetic benchmark, consisting
of sampled sub-graphs and corresponding LM-generated NL
queries. This synthetic benchmark is tested for alignment with

https://www.bilateral-ai.net/home

Prototype

[}
[\
LM extracts Search for similar Constrain Graph G, (d) - -
Query G (a) classes C' & graph G}, () ['erson antversity
= —> i ! —> — 0
24 it 2 @ '
~— —'
—

RAG-assisted graph extraction

user refinements

Queried instances
Grn (e)

Fig. 1: Our query extraction process using LMs, using the query example “a person and the child of a person have the alma
mater of the same university”. We transform the NL query into a prototype graph using a constrained LM. The graph is first
approximated using a LM (a), where the generated classes and links might not match the ontology yet. This initial guess of
the LM is used to search for semantically similar relations (b). With the subset of all possible links and nodes, the graph is
extracted again and corrected for possible errors (c), resulting in a graph that adheres to the ontology. The resulting graph can
be edited (d), e.g., an additional constraint for a country can be added. The resulting prototype graph can be used to perform

queries over a KG to retrieve instances (e).

human query examples using our synthetic query generation
framework. We extend this evaluation to test the integrated
system within a user study. This study enables us to compare
this combined system of NL querying and visual editing with
existing visual query editors, as well as formal question-
answering benchmarks. Our retrieval approach, furthermore,
does not require any metadata about the ontologies or query
examples, unlike other systems [4].

II. RELATED WORK

Previous efforts to map queries presented in NL towards
complex, constrained query languages [4]-[6] focused on
retrieving and generating SPARQL queries directly, resulting
in either highly complex systems, or a retrieval process with
many iterative refinement steps.

Lei et al. [S] map a NL query onto a particular, tai-
lored, Ontology Query Language, used as an intermediate
representation, and then converted to SQL. They use the
ontology to find relevant terms in the NL query and map
them to elements of the ontology. This approach limits the
output to specific instances, hindering both extensibility and
exploration. SPARKLIS [6] approaches the mapping from NL
to a SPARQL query through a mixture of highly constrained
NL and visual exploration. The constraints placed upon the
queries help to adhere to the graph schema but could hinder
more straightforward exploration.

More typically, KGs are queried using SPARQL [3], which
can be generated with LMs [4], [7], [8]. Meyer et al. [7]
have shown that the out-of-the-box performance of multiple
proprietary LMs is lacking for direct generation of SPARQL
queries from NL queries. They demonstrate that adding the
ontology, in textual representation, to the query enhances
the generation. The generation is further improved if only
relevant classes and relations are provided. Similarly, Emonet
et al. [4] improve upon these results by targeting large-
scale federated KGs. They develop a Retrieval Augmented

Generation (RAG) system that automatically augments the
LM input with relevant ontology classes and manually created
example queries. Finally, Liu et al. [8] introduce SPINACH,
a question-answering LM agent for Wikidata, that iteratively
performs actions: searching Wikidata for entities, properties, or
example queries, and executing SPARQL queries on demand.
Effectively, these methods highlight that incorporating the
ontology is essential to improve generated SPARQL queries.
Nevertheless, these methods require the LMs to generate a
syntactically and semantically correct SPARQL query, but—
due to syntax errors or hallucination of properties—can require
feedback error messages to fix the query iteratively.

On the other hand, the visual querying approaches focus
on providing approachable systems to facilitate the use of
knowledge graphs for non-experts. GRAPHITE [9] and VIS-
AGE [10] both employ visual editing of the prototype graphs to
foster the exploration of KGs with a focus on fuzzy matching,
query suggestions, and fast retrieval times. RDF Explorer [11]
approaches this task similarly by providing a graph editor,
enabling the creation of graph examples to retrieve matching
instances from the knowledge graph. The system provides
users with query expansion options throughout the applica-
tion, displaying dynamic results as queries are built. The
authors relate their work to previous query builders, notably
Smeagol [12]. This alternative follows similar exploration and
retrieval paradigms but does not offer a comparable number
of SPARQL features. KGVQL [13] defines a novel visual
query language to ease the transformation between the visual
querying and result set, at the cost of disregarding explorative
approaches, favoring the proposed transformation approach to
convert between data examples and queries. Rhizomer [14]
approaches the exploration of knowledge bases by providing
different user interfaces to explore only at the top-level, graph-
level, or only at the instance level of a single type. Sparnatu-
ral [15] simplifies many of these exploratory approaches into

a tree-based approach.

In comparison to these works, our method utilizes the
ontology to constrain the LM output, thereby creating a pro-
totype graph that can be directly mapped to a valid SPARQL
query. This intermediate graph eliminates syntax errors and
hallucinations while enabling the usage of smaller models
(£ 8B parameters) and removing the need for feedback
error messages. The system is also robust against semantic
mismatches between the query and schema, allowing users
to formulate their queries more freely. We also seamlessly
integrate this NL querying system with a visual interface,
enabling users to adjust and refine their query after the
mapping phase has been completed.

We, furthermore, did not find any applicable benchmark
dataset within the related works analyzed within this paper.
The usual system of using a Q&A system or direct query
generation framework is not applicable to our goal of mapping
from a NL query to a graph representation, which can be
evaluated in a more direct way using well-established scores
like the Fi score or Graph Edit Distance (GED) [16]. The
evaluation of our system, therefore, builds upon a synthetic
evaluation pipeline, combined with alignment tests and a
small-scale user study to confirm our results.

III. METHODOLOGY

Our KG retrieval approach builds on the notion of graph
extraction and graph instance retrieval. To realize this notion,
we require the graph extraction from NL as outlined in
Figure 1. The input to our pipeline is a NL query, returning a
prototype graph G, with nodes IV, and edges E,,. The graph
extraction performance is evaluated using a synthetic dataset,
generated with our query generation pipeline. The synthetic
dataset is shown to be representative of real results through a
comparison of using both synthetic and human-written queries
on a subset of queries. We provide further details to foster
reproducibility in Appendix Section C.

A. Graph Extraction

Our knowledge graph retrieval system builds upon the
notion of a prototype graph G, := (N,, E,) that serves as the
blueprint for all retrieved instances. This graph representation
is similar to Basic Graph Pattern (BGP), with the extension
of adhering to the schema imposed by the ontology. The sub-
graph G, of the ontology consists of the nodes NN,,, each one
an instance of the classes C, and edges FE,, each one a link
of link types L. The multiset of nodes can contain a class
multiple times, and a link can only span the allowed end and
start types (within the class hierarchy), i.e.

Np = {nlv"'an’m} C Ca
E, C {ei = (n4,1j,np) | subtypeof (n, fromtype(l;)),
subtypeof (ny, totype(l;))} € (N, x £ x Np).

We then retrieve the instance graphs Gy, = (Orp, Prp)
from the knowledge base with objects from all vertices or

objects O and predicates from all predicates P in the KG that
match the prototype graph G, i.e.

Orp = {oi €O f typeof(o;) € Np} ,
Prp = {pi =
typeof(oy) € Np,p; € P,l; € E})

(01,15, 0n) ‘ o, 0, € Op p,typeof(o;) € Ny,

Therefore, this retrieval approach requires a prototype graph
G, that matches the types within the possible classes C and
links £ to provide meaningful results. Our graph extraction
pipeline from the NL achieves this constrained retrieval using
a multistep approach illustrated in Figure 1. This approach
first extracts an unconstrained graph G;’ from the NL prompt
using the structured output of a LM [17], which serves as the
basis for retrieval of semantically similar and existing classes
C and links L. These are then used to perform another round
of structured generation to get G, which is refined to the
final prototype graph G/, that can be used to retrieve instance
graphs G p.

1) Graph from NL: This first unconstrained graph gen-
eration step is required as the basis for further querying of
possible classes C and links £. The LM output is nevertheless
restrained to return only a specific JSON schema through
GGML Backus-Naur Form (GBNF) [17], [18]. This measure
enforces a consistent output that can be parsed and used for
further processing. These constraints allow us to construct the
intermediate graph G!/, which has no constraints regarding the
ontology, i.e., £ and C are open. While we could constrain
the graph types to the whole ontology at this step, we have no
way to enforce the structural correctness of the graph over the
outgoing link types, increasing the probability of an invalid
graph.

2) Constraints from Graph: The unconstrained graph is
used to retrieve candidates for the next generation step. This
retrieval is performed for each node n; € N, andedge e¢; € E,
using sentence embeddings of the node and link description.
These embeddings are used to retrieve the top & most similar
results in terms of cosine distance from all classes C and links
L. The LM generation is then further constrained to only
include these results. This retrieval of semantically similar
links results in the subset of classes C’ C C and links £’ C L.

3) Constrained Graph from NL: Finally, the prototype
graph G, is generated by providing the LM with the same
instruction as in the first step, but with additional constraints
placed upon the output generation through GBNF [18]. These
use the additional information of the possible candidate classes
C' and links £’ from the previous step. This limited set
of only semantically similar classes enables the LM still to
express any graph from the NL query while adhering to the
relevant query constraints. The LM-generated graph G, may
contain invalid or flipped links as we cannot enforce a valid
graph structure on the output. This problem is mitigated by
the previous step of only using the ontology subsets and by
cleaning the graph using two rules. The first one exchanges
the direction of the edge, essentially swapping the nodes
(ne, i, mp) = (np, 15, ng), if the types are flipped, i.e., the

link /; may not go from n; to ny, but from n; to ns. Our
second rule discards any invalid links from the graph if they
violate the type constraints.

B. Synthetic Evaluation Methodology

The described graph retrieval system is evaluated using
synthetically generated queries from a sampled prototype
graph G, 5. This graph is used to generate queries in NL using
either a LM that is prompted with the graph as input structure
or a template-based query generation. We additionally validate
our query generation methodology against queries generated
by humans by comparing the resulting evaluation metrics. The
NL prompt is, in turn, used to extract the prototype graph G,
using the method from above. Finally, the sampled and ex-
tracted graphs are compared and evaluated for similarity. This
evaluation system does not incorporate user refinements for
adjusting the output graph, as the methodology evaluates only
the directly returned prototype graph G),. We, furthermore,
compare the query extraction of our system to the output of
the LM without any alignments, i.e. the first unconstrained
output of our system, in an ablation study performed for all
evaluated settings.

1) Graph Sampling: The first step in our synthetic evalua-
tion pipeline is the sampling of prototype graphs G, s from the
ontology. The sampling is based on probabilities derived from
the instance counts of the links. We additionally select classes
that are lower in the class hierarchy using a similar proba-
bilistic approach. Finally, further links are added based on a
random choice of node and a similar probabilistic selection.
This probabilistic sampling is only performed for ontologies
with sufficient instances, as indicated in Section III-B4. The
classes and links are sampled uniformly for the other cases.
Additional graph sampling details can be found in Section A.

2) Generation of the Query: Next, the NL query is gen-
erated synthetically from the previously sampled graph G, 5
using a LM, more specifically the Hermes 3 Llama 3.2 3B
model [19]. The LM is presented with a textual represen-
tation of the types of classes and links within the graph
and prompted, using a one-shot approach, to generate the
queries. We also employ a template-based query generation
approach to prevent potential information leaks and evaluate
simpler queries [20]. Additionally, we create 12 human-written
queries from the sampled graphs to validate our evaluation
methodologies for queries used in practice.

3) Scoring the Graphs: Finally, the prototype graph G,
can be extracted from the synthetic query using our graph
extraction methodology and compared to the ground truth
sampled graph G, ;. This evaluation employed two scoring
methodologies: one for the retrieval performance of the nodes
N, and relations FE),, and another for the graph layout. First,
the similarity between the retrieved nodes [V,, and sampled
nodes N, is compared using the F}-score over the sets.
This set-based I ,oq4.-score uses the true positives TP =
|Np, N Nps|, false positives F'P = |N, — N, | and false
negatives F'N = |N, ; — N,| rates from set intersections and

differences. The F} ,, of the relations is computed using the
same scheme using F, and F, ;.

Second, the graph similarity is computed using the
GED [16], which employs a stricter notion of similarity,
requiring not only isomorphism between the graphs but also
the same node and link types for the graphs. To achieve a
comparable score to the F; scores and between different graph
sizes, we weigh the distance by the number of nodes and links
and invert it, giving the normalized GED score

GED
} 4 max{| B[, | Ep o[}

Both evaluation methodologies provide scores for a single
query example. We therefore reduce them to single values by
averaging the scores over the different queries and evaluation
settings.

4) Evaluated Models and Ontologies: The evaluation of
this work relies heavily on the use of LMs for graph re-
trieval, semantic retrieval, and constrained retrieval. We use
the Hermes models [19] (3B, 8B, and 70B parameter sizes)
for generative retrieval tasks due to their fine-tuned capabil-
ities for structured output, comparing them to two Qwen2.5
(32B parameters) models (Instruct and Code fine-tuned) [21].
The Stella 400M [22], [23] model is used for all semantic
retrieval tasks. Further implementation details can be found in
Section C.

We evaluate our approach on four ontologies, specifically

GED; =1

~ max{|N,|,|N,..

o DBpedia [2], an ontology and KG containing mapped
information from Wikidata;
e Yago 4 [24], a similarly curated version of Wikidata on
the schema.org classes;
« Brainteaser Ontology (BTO) [25], a smaller ontology and
KG focusing on brain-related diseases; and
e UniProt [26], a similarly focused ontology and KG
containing vast amounts of protein sequences and their
functional information.
Only DBpedia [2] and Yago 4 [24] use the probabilistic
sampling based on instance count, as the other two ontologies
do not provide such a large KG to enable good sampling, using
the uniform sampling approach instead.

C. Constraining the LM

The LMs are constrained to a schema specified to a grammar
whenever we retrieve any graph using language generation. To
this end, we use 1lama-cpp-agent!, which can constrain
the LM to only output a specific model using a predefined
grammar. The first prototype graph G;)’ uses a static schema
and grammar. In the next generation step, the grammar is
adapted to the specific, similar relations found utilizing the
output of the first round. The updated grammar is then used
to constrain the output only to contain valid types and links,
which can be used to generate the correct prototype graph G,,.
The graph G, can be converted into a SPARQL query if the
user requires it for further use, as shown in Section B.

Uhttps://llama-cpp-agent.readthedocs.io/

Results

Miniatures || Properties

Fig. 2: OnSET user interface [27] showing the query for the
example from Figure 1. The user can edit the prototype graph
G, on the left, view the connected nodes at the bottom using
a circle-packing visualization of the ontology, and inspect the
instances G, directly on the right within the interface.

D. User Interface

Additionally, we allow the users to refine their initial queries
using a node-based editor, where links and nodes can be added
to or removed from the graph, all within the constrained link
set £, and class set C. This refinement can be helpful if
our pipeline fails to find the correct graph or if the users
want to refine their search without an additional text prompt.
We support a similar refinement process as the second step
in our pipeline, which involves performing semantic search
for link retrieval. We use the cosine similarity of sentence
embeddings [23] to compare possible new links that the user
can search through when adding these. The query editor is
based on the prior work within the Ontology and Semantic
Exploration Toolkit (OnSET) [27] and shown in Figure 2.

Furthermore, we transparently display how the queries are
built using the LM through a similar flow to that shown in Fig-
ure 1. This visualization should hold our system accountable
for any mistakes and errors that occur during processing and
may guide the user towards specifying more precise queries
or exploring other querying avenues.

E. User Study

We additionally conduct a preliminary user study to support
our claims on usability and improvements in query formula-
tion. Our study focuses on two aspects of the user’s experience:

1) The user’s ability to formulate the correct queries given
increasingly complex tasks, with the option to adjust
queries using our proposed user interface.

2) The effectiveness of the integrated NL query interface
and visual editor.

To validate our claims, we first task the users with complet-
ing three increasingly complex queries, as shown in Table I.
Each user watches a 2-minute introductory video and has 20
minutes to perform all four tasks. We time the completion
of each task and note whether it has the correct number of
nodes and links, as well as the correct node types, link types,
and constraints. After they complete all tasks or run out of

TABLE I: User tasks on the DBpedia KG.

No. Task k

0 Find all works where the author is a hockey player. 2

1 Persons that are authors of a work and are gold medalists in 3
a sports event.

2 Ships that have their home port in a place in the country 4
United States and persons who have the same place as their
death place.

3 A work that is the opening theme for a TV show is composed 5
by a person and that person has a child. The person has the
alma mater of an University.

time, the user is presented with a System Usability Score
(SUS) [28] evaluation questionnaire to estimate their load on
our system. We compare our system to the RDF Explorer,
which is evaluated using a similar strategy [11].

IV. RESULTS

We demonstrate our system’s capabilities to retrieve the cor-
rect graph from the query using our synthetic graph generation
and evaluation pipeline. We evaluate the system at three dif-
ferent node sample counts, k € {2,3,5, 7}, to model varying
degrees of complexity in the queries. Each node sample count
k is sampled for 128 synthetic queries. Additionally, we use
five different open-weight models to test the dependence on
model size and type. Our evaluation in Figure 3 shows that
we can faithfully recover the prototype graph from the NL
query. While we cannot achieve a perfect recovery of all nodes
and relations in all settings, we accomplish a F} score on the
node retrieval on DBpedia across all models of approximately
0.7 throughout the different levels of complexity. The correct
relations are retrieved at an even higher F) score of roughly
0.8 for the various ontologies and settings. Similarly, the GED
score GED, shows that the graph structure can be recovered
quite well for most of the smaller graph sizes and drops
slightly for the larger, more complex queries, demonstrating
that our approach is most useful for smaller graphs. Our
evaluation, furthermore, shows that using a larger model is
only slightly beneficial for our use case. The system performs
similarly across all model sizes and types, suggesting that even
smaller models can reconstruct the prototype graph quite well
due to the constraints we place on the output.

The evaluation also shows that the constraint and alignment
step to the ontology, including our corrections, is essential
to retrieve the correct graph. This is evident by the ablation
study performed by comparing the raw output of the LM to
the aligned outputs of our fill pipelines. The system achieves
indeed higher scores in the aligned results, and can be ob-
served for almost all combinations of query complexities, LM
models, and ontologies.

Finally, we compare our different query generation methods
in Table II by evaluating two query complexities k = {3,5}
and comparing the scores. The LM-based generation method
performs similarly to the human-generated queries. This
comparative evaluation, additionally, shows that the template
queries perform better than the compared LM-generated ones.

1.0 -

0.8 - 0.8 -
206~ S 06-
& o
g 04- Hermes 3 3B aligned raw § 04-
= Hermes 3 8B aligned raw >
) Hermes 3 70B aligned raw
0.2- Qwen2.5 Coder 32B aligned raw 02-
Qwen2.5 Instruct 32B aligned - raw
0.0~ i i i i i 0.0~ i i i i i
2 3 4 5 6 7 2 3 4 5 6 7
k k
(a) Finode on DBPedia (b) F1 0de 0N Yago
1.0 - 10-
0.8~ 0.8 -
306 % 06-
& =
o =
S 04- g 04-
= =
02- 02 -
0.0- | | | | | | 0.0 - | | | | |
2 3 1 5 6 7 2 3 4 5 6 7
k k
(e) Fi, on DBPedia (f) F1,e on Yago
10- 1.0-
0.8 - 0.8~
1~ I
g 0.6 - m 06-
O X}
= =
S 04- T 04-
= =
02- 02-
00- | | | | | 0.0- | | | |
2 3 4 5 6 7 2 3 4 5 6 7
k k

(i) GED;s on DBPedia () GED; on Yago

Fig. 3: F1 nodes F1,re1, and GED, on four different ontologies,
and aligned (constrained) output.

TABLE II: Comparison of query generation methods for
Hermes 3B on DBpedia.

Mean Mean

k Query Origin Stage Finode GEDs
3 human aligned 0.63 0.40
raw 0.52 0.24

Ilama aligned 0.71 0.46
raw 0.68 0.36

templated aligned 0.81 0.57

raw 0.79 0.54

5 human aligned 0.69 0.22
raw 0.90 0.27

llama aligned 0.66 0.34
raw 0.67 0.25

templated aligned 0.83 0.48
raw 0.74 0.45

These results indicate that the LMs perform better with simpler
formatted queries, such as the template-generated queries.

A. User Study

We also inspect the preliminary results of our user study
shown in Table III, which involved n = 11 participants. We
observe that our average correct completion rate (“Success
Rate”) is high throughout the increasingly complex tasks, com-
pared to the study on RDFExplorer [11]. They report that their
correctness decreases, possibly due to time constraints. Within
the survey of our tool, however, no user took longer than the

1.0-
0.8 -

0.6 - 2 06-

& &
B =
§ 04- S 04-
= =
02- 0.2-
0.0- 4 i i i i 0.0- i i i i i
2 3 4 5 6 7 2 3 4 5 6 7

ks 7 B
k k

(d) F node on UniProt

1.0

0.8 -

% 06- % 06-
& &
p -
§ 04- g 04-
B H
0.2- 02 -
0.0- | | | | | 0.0- | | | | |
2 3 4 5 6 7 2 3 4 5 6 7
k k
(g) F1,00 on BTO (h) F1 e on UniProt
1.0 - 1.0 -
0.8 - 0.8~
S 06- S o06-
) <]
= =
g 04- g 04-
B H
02- 02~
0.0- i i i i i 0.0- i i i i i
2 3 4 5 6 7 2 3 4 5 6 7
k k

(k) GEDs on BTO (1) GEDs on UniProt

comparing different models and node amounts %, and the raw

TABLE III: Task results for the OnSET user study on DBpedia
with n = 11.

Task Success Rate Time (mm:ss)
Task 0 0.73 03:46
Task 1 091 01:12
Task 2 0.73 04:49
Task 3 1.00 02:05

20-minute time frame, and we observed lower success rates
only for the first and third tasks. These tasks might have been
more challenging because the LM did not directly provide
the correct prototype graph. The most complex task, however,
had the highest correctness rate compared to the others in
our study. These results, in contrast to the observations of the
RDFExplorer, indicate that our system performs consistently
across varying levels of difficulty and primarily relies on the
LM output. The evaluation of our SUS questionnaire resulted
in a score of 71.4.

V. CONCLUSION

We introduce a novel querying system in this paper to aid
users in exploring ontologies and generating queries from NL.
The interface uses only NL as the input, providing the users
with a fuzzy interface to explore an otherwise strict system
of classes and links. We achieve this translation from fuzzy

input to the strict notion using a query processing pipeline
that heavily utilizes LMs for generating the prototype graph,
performing semantic similarity search, and constrained graph
generation. We provide a prototype graph as an intermediate
output from this pipeline. This prototype graph can be refined
through a node-based editor to better reflect the users’ infor-
mation needs if the LM failed to map the NL query completely,
or the user has a more specific information need.

We evaluate our system on a set of synthetic queries with
varying levels of complexity. These should reflect users’ vary-
ing information needs and queries while evaluating our system
for more complex tasks. This evaluation demonstrates that the
extracted prototype graphs accurately represent the sampled
graphs, particularly for smaller graphs. This performance
level, especially at the smaller graph sizes, should provide a
robust system that adheres to the users’ initial interests. We
demonstrate that this level of performance can be achieved
with smaller models.

In contrast, existing systems struggle with these smaller
models and require significantly more powerful, and thus more
expensive, models. They, furthermore, often require iterative
systems to retrieve syntactically correct queries, whereas our
system can provide valid queries using our two-step retrieval
process. We furthermore validate our approach by comparing
the synthetic queries generated by a LM and template system
from the sampled graphs to a small set of manually written
queries. These evaluations show that the LM-generated queries
do indeed adhere to the manually written queries, thereby
strengthening our query evaluation approach.

We additionally conducted a small-scale user study to assess
our systems’ performance with respect to usability and task
completion time, where we observed high rates of correctness
and fast completion times compared to existing systems. This
suggests that combining a precise and efficient LM system
with a visual query editor can reduce the time spent on
creating queries while improving the correctness of the results
compared to prior works.

VI. FUTURE WORK

The introduced system builds a prototype graph based on
NL input, enabling users to explore and query knowledge
graphs effectively. Future versions could, however, enhance
the robustness of retrieving the prototype graph from NL
queries for larger and more complex queries by utilizing more
sophisticated models or fine-tuning smaller, more specialized
models for the graph retrieval task at hand, thereby achieving
even more precise initial graph responses.

Another avenue for further improvement in this system is
the addition of constraints to the graph generated by the LMs.
While we can constrain the properties (e.g., the age, name, or
height of a person) within the user interface, we do not provide
a way for the LM to add this to the generated query. These,
however, are an integral part of the KG and the information
they contain. We intend to extend the LM output and graph to
include these filters on the edges and formalize these structures
to get a constrained output, including these constraints.

The user study will also be extended to include more users,
with additional questionnaires and possibly more challenging
tasks, to facilitate a more comprehensive comparison with
other systems using visual query builders.

REFERENCES

[1] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing?” Int. J. Hum. Comput. Stud., vol. 43, no. 5, pp.
907-928, Nov. 1995.

[2] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“Dbpedia - a large-scale, multilingual knowledge base extracted from
wikipedia,” Semantic Web, vol. 6, pp. 167-195, 2015. [Online].
Available: https://api.semanticscholar.org/CorpusID: 1181640

[3] A. Seaborne, R. Taelman, G. Williams, O. Hartig, and T. P. Tanon,
“SPARQL 1.2 query language,” W3C, W3C Working Draft, Dec. 2024,
https://www.w3.org/TR/2024/WD-sparql 1 2-query-20241227/.

[4] V. Emonet, J. Bolleman, S. Duvaud, T. M. de Farias, and
A. C. Sima, “Llm-based sparql query generation from natural
language over federated knowledge graphs,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.06062

[5]1 C. Lei, E Ozcan, A. Quamar, A. R. Mittal, J. Sen, D. Saha, and
K. Sankaranarayanan, “Ontology-based natural language query inter-
faces for data exploration.” IEEE Data Eng. Bull., vol. 41, no. 3, pp.
52-63, 2018.

[6] S. Ferré, “SPARKLIS: An Expressive Query Builder for SPARQL
Endpoints with Guidance in Natural Language,” Open Journal Of
Semantic Web, vol. 0, 2017. [Online]. Available: https://inria.hal.
science/hal-01485093

[71 L.-P. Meyer, J. Frey, F. Brei, and N. Arndt, “Assessing sparql
capabilities of large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2409.05925

[8] S. Liu, S. Semnani, H. Triedman, J. Xu, I. D. Zhao, and M. Lam,
“SPINACH: SPARQL-Based Information Navigation for Challenging
Real-World Questions,” ACL Anthology, pp. 15977-16001, Nov. 2024.

[91 D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and
T. Eliassi-Rad, “Graphite: A visual query system for large graphs,” in
2008 IEEE International Conference on Data Mining Workshops, 2008,
pp- 963-966.

[10] R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, and D. H.
Chau, “Visage: Interactive visual graph querying,” in Proceedings of the
International Working Conference on Advanced Visual Interfaces, ser.
AVI ’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 272-279.

[11] H. Vargas, C. Buil-Aranda, A. Hogan, and C. Lépez, “Rdf explorer:
A visual sparql query builder,” in The Semantic Web — ISWC 2019,
C. Ghidini, O. Hartig, M. Maleshkova, V. Svitek, I. Cruz, A. Hogan,
J. Song, M. Lefrancois, and F. Gandon, Eds. Cham: Springer Interna-
tional Publishing, 2019, pp. 647-663.

[12] A. Clemmer and S. Davies, “Smeagol: A “specific-to-general” semantic
web query interface paradigm for novices,” in Database and Expert
Systems Applications, A. Hameurlain, S. W. Liddle, K.-D. Schewe, and
X. Zhou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 288-302.

[13] P. Liu, X. Wang, Q. Fu, Y. Yang, Y.-F. Li, and Q. Zhang, “KGVQL: A
knowledge graph visual query language with bidirectional transforma-
tions,” Knowledge-Based Systems, vol. 250, p. 108870, Aug. 2022.

[14] R. Garcia, J.-M. Lépez-Gil, and R. Gil, “Rhizomer: Interactive semantic
knowledge graphs exploration,” SoftwareX, vol. 20, p. 101235, Dec.
2022.

[15] T. Francart, “Sparnatural: a visual knowledge graph exploration tool,”
in European Semantic Web Conference. Springer, 2023, pp. 11-15.

[16] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, “An
Exact Graph Edit Distance Algorithm for Solving Pattern Recognition
Problems,” in 4th International Conference on Pattern Recognition
Applications and Methods 2015, Lisbon, Portugal, Jan. 2015.

[17] M. X. Liu, F. Liu, A. J. Fiannaca, T. Koo, L. Dixon, M. Terry,
and C. J. Cai, ““we need structured output”: Towards user-centered
constraints on large language model output,” in Extended Abstracts
of the CHI Conference on Human Factors in Computing Systems,
ser. CHI °24. ACM, May 2024, p. 1-9. [Online]. Available:
http://dx.doi.org/10.1145/3613905.3650756

https://api.semanticscholar.org/CorpusID:1181640
https://arxiv.org/abs/2410.06062
https://inria.hal.science/hal-01485093
https://inria.hal.science/hal-01485093
https://arxiv.org/abs/2409.05925
http://dx.doi.org/10.1145/3613905.3650756

[18] llama.cpp authors, “Gbnf guide,” Feb 2025, [Online; accessed
2025-02-11]. [Online]. Available: https://github.com/ggerganov/llama.
cpp/blob/b9ab0a4d0b2ed 19effec130921d05fb5c30b68cS/grammars/
README.md
R. Teknium, J. Quesnelle, and C. Guang, “Hermes 3 technical report,”
2024. [Online]. Available: https://arxiv.org/abs/2408.11857
S. Sannigrahi, T. Fraga-Silva, Y. Oualil, and C. Van Gysel, “Synthetic
query generation using large language models for virtual assistants,”
in Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. SIGIR 2024.
ACM, Jul. 2024, p. 2837-2841.
Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu,
C. Li, D. Liu, F. Huang, H. Wei, H. Lin, J. Yang, J. Tu, J. Zhang,
J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li,
T. Tang, T. Xia, X. Ren, X. Ren, Y. Fan, Y. Su, Y. Zhang, Y. Wan,
Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu, “Qwen2.5 technical report,”
2025. [Online]. Available: https://arxiv.org/abs/2412.15115
D. Zhang, J. Li, Z. Zeng, and F. Wang, “Jasper and stella:
distillation of sota embedding models,” 2025. [Online]. Available:
arxiv.org/abs/2412.19048
N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: https:
/farxiv.org/abs/1908.10084
T. Pellissier Tanon, G. Weikum, and F. M. Suchanek, “YAGO 4: A
reason-able knowledge base,” in The Semantic Web - 17th International
Conference, ESWC 2020, Heraklion, Crete, Greece, May 31-June 4,
2020, Proceedings, ser. Lecture Notes in Computer Science, vol. 12123.
Springer, 2020, pp. 583-596.
G. Faggioli, S. Marchesin, L. Menotti, G. M. D. Nunzio, G. Silvello, and
N. Ferro, “The brainteaser ontology for als and ms clinical data,” 2024.
[Online]. Available: https://zenodo.org/doi/10.5281/zenodo.12789731
T. U. Consortium, “Uniprot: the universal protein knowledgebase in
2025, Nucleic Acids Research, vol. 53, no. D1, pp. D609-D617, 11
2024. [Online]. Available: https://doi.org/10.1093/nar/gkae1010
B. Kantz, K. Innerebner, P. Waldert, S. Lengauer, E. Lex, and T. Schreck,
“Onset: Ontology and semantic exploration toolkit,” in Proceedings
of the 48th International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR °25. New York,
NY, USA: Association for Computing Machinery, 2025, p. 3980-3984.
[28] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4-7, 1996.

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

APPENDIX

A. Graph sampling

We sample the ontology for queries using the procedure in
Algorithm 1. The outlined algorithm should provide a broad
variety of graph structures, classes, and relations to create a
diverse set of queries for our evaluation, while being faithful
to the interest of the users based on the probabilistic sampling.

B. Query Generation

We generate the SPARQL queries from our prototype graphs
G, directly by iterating over all links and nodes. Each link
results in the link type and left and right nodes; each node
adds the node as a a class. Listing 1 shows a resulting query
for an example query — the same query as in Figures 1 and 2.

C. Reproducibility

To ensure the reproducibility of our evaluation and enable
further experiments on our user interface, we provide our
code and parameters on github.com/Dakantz/OnSET.
We performed the experiments on the smaller models (<32B

Algorithm 1: Prototype graph G, s sampling from the ontol-
ogy using instance counts within the KG.

Require: classes C, links £, objects O, predicates P, samples
k > 0, depth d > 0, maximum of nodes Myoges > 0
function DOWNGRADE NODE(ny)

Csup < subtypes of ns up to depth d
Praie(ns) = g
), eCyp 111,01 €/ [N =typeof(nr,p,i)}
return n ~ Pr,,qc(ns)

end function

function DOWNGRADE LINK(l = (1,5, p,j, L))

Tp.i,sub <~ DOWNGRADE NODE(7,, ;)
Ny j.sub <~ DOWNGRADE NODE(n,, ;)

return [= (np,i’sub,npyjﬁsub, l”)

end function

Lecand. < top k links £

> By instance count
) _ {er,n,is€Pll=typeof(er,n,ij)}
-Plznk(l S Ecand.) - ZLIECcand. {e1.n.i, P =typeof(er.n.i;) }|

lsel ~ P(l S Ecand.)
lsub < DOWNGRADE LINK(])
E, s < {lsub}
Ny s < {np,O,subvnp,l,sub}
while myodes > |Np 5| do
side ~ U{left, right}
Nsel ~ U(Np)
Lcand. next < top k links attaching to side
lnew ~ Plz'nk (l S Ecandqnext)
lyew,sel <~ DOWNGRADE LINK ({peq)
Ep,s — Ep,s U {lnew,sel}
N, s < N, s U{added node of I,y ser}
end while
output G, s = (Np 5, Ep)

parameters) on a system with an RTX 4090, and the large-
scale LM experiments on our university cluster on multiple
Quadro RTX 8000s.

Listing 1: Example SPARQL query generated from the input
“a person and the child of a person have the alma mater of
the same university”.

SELECT DISTINCT ?person_1 ?person_2 °?

university_1 WHERE {

?person_1 <http://dbpedia.org/ontology/
child> ?person_2.

?person_1 <http://dbpedia.org/ontology/
almaMater> ?university_1.

?person_2 <http://dbpedia.org/ontology/
almaMater> ?university_1.

?person_1 a <http://dbpedia.org/ontology/
Person>.

?person_2 a <http://dbpedia.org/ontology/
Person>.

?university_1 a <http://dbpedia.org/
ontology/University>.

https://github.com/ggerganov/llama.cpp/blob/b9ab0a4d0b2ed19effec130921d05fb5c30b68c5/grammars/README.md
https://github.com/ggerganov/llama.cpp/blob/b9ab0a4d0b2ed19effec130921d05fb5c30b68c5/grammars/README.md
https://github.com/ggerganov/llama.cpp/blob/b9ab0a4d0b2ed19effec130921d05fb5c30b68c5/grammars/README.md
https://arxiv.org/abs/2408.11857
https://arxiv.org/abs/2412.15115
arxiv.org/abs/2412.19048
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://zenodo.org/doi/10.5281/zenodo.12789731
https://doi.org/10.1093/nar/gkae1010
https://github.com/Dakantz/OnSET

	Introduction
	Related Work
	Methodology
	Graph Extraction
	Graph from nl
	Constraints from Graph
	Constrained Graph from nl

	Synthetic Evaluation Methodology
	Graph Sampling
	Generation of the Query
	Scoring the Graphs
	Evaluated Models and Ontologies

	Constraining the lm
	User Interface
	User Study

	Results
	User Study

	Conclusion
	Future Work
	References
	Appendix
	Graph sampling
	Query Generation
	Reproducibility

